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Abstract. We discuss a very effective numerical method for simulating fibre-bundle models 
with equal load-sharing and with local load-sharing. Particular attention is paid to the case 
of the local ioad:sharing model, in which the critical load xS is defined as the average load 
per fibre thak causes the final complete failure. It is shown that xc -+ 0 when the size of the 
system N -t Co. We also  show^ analytically that the power law of the bum size distribution, 
D ( A )  c( A-!. is approximately correct. The exponent 6 in the local load-sharing case is not 
universal, since it depends on the strenglh distribution as well on as the size of the syslem. 

I. Introduction 

The statistical properties of the strength of materials with stochastically distributed elements 
are important in practical applications. A simple classical model in this field is the fihre- 
bundle model, which has been studied by many authors [l-101. There are two main types 
of fibre-bundle models according to their, rule of load distribution. One type is the equal 
load-sharing, or global load-sharing [l], model, and the other one is the local load-sharing 
model. Consider a bundle of N fibres, stretched at both ends. The strength x of the fibres, 
i.e. *e maximum load the fibres are able to cany, varies from  fibre to fibre according to 
some probability density distribution p ( x ) .  The fibres are stretched until they fail. In the 
global load-sharing fibre-bundle model, as each individual fibre breaks, the load distributes 
itself equally among the surviving fibres, while the failed fibres cany no load. Hemmer and 
Hansen 11.51 proved that in this case, the expected number D ( A )  of the burst of size A, 
in which a total number A of fibres break simultaneously, follows asymptotically a power 
law: 

D(A)  o( A-( (1) 
with the universal exponent = 2.5, for an arbitrary distribution of individual fibre strength. 
This power law is proved to be exact when N -+ W. It has also been shown [l] that the 
breakdown process approaches a critical point. This lends strong support to the conjecture 
that fracture in brittle materials under load is a critical process, i.e. a dynamical process 
that evolves toward an attractive fixed point, as is typical of self-organized criticality [ll]. 
Another type of fibre bundle is associated with local load-sharing. This type of model is 
motivated by the fact that the assumption of global load-sharing is often unrealistic. The 
extreme form for local load-sharing is that all the extra stress caused by a fibre failure is 
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taken up by the nearest neighbours of the failed fibres. So spatial shucture is introduced 
into the fibre-bundle model, while the global load-sharing model has no spatial structure. 
Hansen and Hemmer [ 121 studied a one-dimensional case for extreme local load-sharing, 
and gave some results different from that of the global load-sharing model. In particular, 
they found that the exponent in the burst size distribution D ( A )  c( A-6 is different from 
2.5, the result for the global load-sharing model. By numerical simulation, they found in 
the local load-sharing model exponents 5 larger than 4, in particular 5 4.5 for a uniform 
threshold distribution, when the size of the system N is of the order of lo3. They left the 
question ‘Is the result ( E 4.5 universal, i.e. under mild restrictions independent of the 
strength diseibution?’ unanswered. In order to answer such a question, simulations on a 
large system with different types of strength distribution should be carried out. 

For fibre-bundle models, the usual strategy of computer simulation is to set aside an 
array of N elements, to record the strength of each fibre. Random numbers x with specified 
distribution p ( x )  are preassigned to the fibres as their strength. Then the system evolves 
according to its dynamical rules. The simulations are restricted by limited computer memory 
and CPU time, so the system size N cannot be very large. However, it is important to simulate 
systems of large size in order to exploit the asymptotic behaviour of the model. In order 
to simulate a system of large size, more effective simulation methods should be used. In 
this paper, we will discuss in detail a new simulation method, which allows simulations 
on systems of large size, and which also reduces CPU time expenditure. In section 2, 
we introduce a kind of random number generator, ordered random number generator, the 
essential ingredient of the new method. Section 3 is devoted to discussing the application 
of the new simulation method to the global load-sharing fibre-bundle model. In section 4, 
we discuss in detail the burst process and the simulation of the local load-sharing model. 
We also try to give some analytical results for the burst size distribution. Some results have 
been reported previously 171. Conclusions are given in section 5. 

S D Zhang and E .I Ding 

2. Ordered random number generator 

The most commonly used random number generator is the uniform one, which generates 
uniformly distributed random numbers in [O, 11. Generators of other distribution forms can 
be constructed by using the uniform one. Here, we present an ordered random number 
generator, which generates random numbers in an ordered sequence, with a specified 
distribution. Suppose we need total number N of random numbers x with distribution 
p ( x ) ,  in the interval IO, 11 (Any other region can be mapped to [O, 11). Let us number them 
by 0 < x(  < x2 < x 3 . .  . c X N  < I .  By using the usual random number generator, we can 
certainly make N random x’s.  But the problem is that generally the smallest number is 
not generated first. The ordered random number generator we proposed is able to give out 
random numbers in an ordered sequence, from small to large, without loss of randomness. 

When xi is given, we know that there are N - i random numbers in the interval [x i .  I ]  
and that among these xi+] is the smallest. The probability density distribution of xi+] is 

In the case of p ( x )  = 1, equation (2) reduces to 
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When N - i >> 1, noticing that 1 - x i  m ( N  - i - I ) / N ,  we have 

By normalizing the above equation, we get 

where 

o( e-?(J~+~-';). 

¶(S. ,+I ) - - B(~~)~-N(X,+I-X~) 

So the probability that xi+] is no larger than x is 

By now we have constructed the ordered random number generator. We can generate 
the ordered numbers in the following way: First, set xo = 0. Next, take a random number 
yl from the usual uniform generator, then use (7) to obtain x1 

1 
N 

X ]  = --I n[l yl(1- e-N)]. 

Then xz. xg, . . . , x i  are obtained in the same way. 

)I. -NU-=;.))  1 
N 

x .  z - x , - l - - l n [ l - y ~ ( l - e  - . 

Here (yi] are random numbers uniformly distributed in [0, I]. 
N - i >> 1. For this 

reason, the above procedure is reliable only when N - i >> 1. For N - i - 1 the ordered 
 random^ number generator might not work properly. But this situation has little effect on 
our simulations, because we only need the reliable pait of the N ordered random numbers. 
We will explain this point in the following sections, 

We have succeeded in obtaining random numbers in ordered sequence with distribution 
p ( x )  = 1. Suppose 0 < ZI < zz c 23 < .. . < Z N  e 1 are N random numbers with uniform 
distribution in' [O. 11. When N is large 

i f N m z i .  
Assume that 0 < X I  < x2 < x3 < . . . < X N  < 1 $e N random numbers with distribution 
p ( x )  in [0, 11. When N is large 

We should note here that in obtaining (3), we have assume 

ilN x lx' p ( x )  dr. 

Combining the above two equations, we have 
xi 

zi =l p ( x ) d x .  (8) 

Using equation (8), we can generate xi, the ith ordered random number with distribution 
p ( x ) ,  through the uniformly distributed random number z i .  In this paper, we mainly consider 
the distribution form p ( x )  = ux"- I .  For this form of p ( x ) ,  we simply have xi = zt'". 
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3. Simulation on global load-sharing models 

The global load-sharing model has been investigated thoroughly by Hemmer and Hansen [5 ] .  
If fibre i is stretched to a length I = Io + x ,  its force response is 

S D Z h g  and E J Ding 

if x < t; 

if x 2 ti. (9) f i =  (f 
Here t; is the failure threshold of this fibre, i.e. the strength of this fibre, and I ,  is the natural 
length of the fibre. For simplicity, the modulus of the fibre, K ,  is assumed to be unity. Let 
xk be the ordered sequence of failure threshold r;: X I  < xz < x3 < . . . < X N .  The external 
load F on the bundle at the moment when the kth fibre is about to break can be expressed 
as 

Fk = ( N  + 1 - k ) ~ .  (10) 

Note that the external loads ( Fk) at which the fibre would fail do not form a monotonically 
increasing sequence. Thus all values Fk will not be realized in the rupture process. Assume 
that the external load F has reached a value Fk, and that the subsequent values satisfy 
F k f j  < FX for j = 1.2, . . . , A - 1 while Fk+* > Fk. In this case, all fibres corresponding 
to x k ,  X k + i ,  . . . , x k + ~ + ,  fail, without changing the external load, before the bundle again 
reaches equilibrium. The simultaneous failure of the A fibres is called a burst of size A. 
The purpose of the simulation on this model is to find the relation between the expected 
number of burst, D ( A ) ,  and the size A .  Using the ordered random number generator, the 
simulation can be carried out very easily. First, x1, the strength of the weakest fibre in 
the bundle, is obtained from the generator. Then calculate F, according to (10) and record 
Fi as the current largest Fk.  Then xz is generated by the generator, and FZ is calculated. 
If F2 > F I ,  the current largest Fk is replaced by Fz, then we h o w  that a burst of size 
1 occurred. If FZ < F,, relinquish FZ and calculate F3, and so on. In the process, we 
only need to reserve space in the computer memory for the current largest Fk and for the 
strength of the current fibre that is about to fail. It is not necessary to consider all the fibres 
in the system at the same time. So the computer memory required is greatly reduced, and 
cpu-time expenditure is reduced to only about 2 percent of the usual method. We made 
some calculations on a system of N = 500000 fibres using a ‘Sun 4 SPARC standard I+’ 
workstation. The CPU time expenditure per sample is 25.4 seconds. The exponent for the 
burst size power-law distribution is in agreement with the analytical result in [5 ] .  

We also tried the usual method which considers all fibres at the same time. In this case, 
the system of the largest size, to which the usual method can be used, consists of 50000 
fibres. The CPU time expenditure for such a system by the usual method is 127.8 seconds 
per sample. Compared with the new method of simulation, this is quite large. 

4. Fibres bundle with local load-sharing 

4.1. Simulation method 

For the fibre bundle model with local load-sharing, the simulation is much more complex 
than that of global load-sharing because spatial structure is introduced. In the extreme 
version for the local load-sharing model all the extra stress caused by a fibre failure is 
taken up by the nearest neighbours of the failed fibres. In the onedimensional case, the 
total number N of parallel fibres are mounted equidistantly on a circle, so each fibre has 
two nearest neighbours. If one fibre fails, its two neighbours will take up its load. If 
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one or both of its nearest neighbours had failed, further neighbours effectively become its 
nearest neighbours, and so on. For example, if fibre 1 fails, fibre N and fibre 2 will share 
equally the load of fibre 1 (Note that fibre N is one of the nearest neighbours of fibre 1). 
If fibre 2 also fails, fibre 3 and fibre N take up the loads of fibres 1 and 2. This model 
has been discussed previously for a, different purpose [lo]. Hansen and Hemmer reported 
recently [12] that this model is not in the universality class of the fibre bundles with global 
load-sharing. It will be shown by our simulations on larger bundles that the exponent e for 
the local load-sharing case is not universal,~in the sense that its value depends both on the 
strength distribution p ( x )  and on the number N of fibres. At the beginning of the burst 
process, the weakest fibre breaks first, then if its neighbours cannot stand their load, they 
will break, if they are strong enough to support the load, the next fibre to break will be the 
second weakest one, and so on. 

Using the above approach, it is sufficient in the simulation to record only the neighbours 
of failed fibres and the weakest surviving fibre, because the next fibre to break is always 
among them. Information about these fibres are recorded in an may. Once a fibre fails, 
information about this fibre will be removed and information about some other fibres should 
be recorded. Assume that the current weakest fibre has strength xi.  If the newly broken 
fibre is not the weakest one,~we need only to record the strengths of its neighbours. Their 
strengths must be larger than xi .  However, if the newly broken fibre is the weakest one, we 
then need two independent random numbers, one which is used to determine the location 
of the pew weakest surviving fibre, and the other one to determine the strength of the new 
weakest fibre, which should be obtained through the ordered random number generator. 
Whenever the load on one fibre of the system exceeds 1, which is the maximum strength 
of the fibres, we know that complete failure of the system occurs. It is in this sense that we 
claimed in section 2 that we only need the reliable part of the N ordered random numbers 
(i.e. X I  through xi .  with N - i >> 1). 

With this new method of simulation, CPU time and computer memory expenditure are 
greatly reduced. For example, using the usual method we can only simulate bundles which 
consist of at most 50000 fibres, and the CPU time expenditure for a sample of 50000 fibres 
is 1,406 seconds. Using the new method we can simulate fibre bundles of at least 400000 
fibres. CPU time expenditure is reduced to less than ten percent of the usual method. It 
should be noted that the two methods give the same results when the system size is not too 
large, so that both methods are applicable. 

In figure 1, we illustrate a typical bursting process of the system. We can see that at 
the beginning, fibres fail in random places, and leave ‘holes’ in the system. Here we call 
the successively failed fibres a ‘hole’. As the burst events continue to occur, some holes 
will probably connect to each other and become one large hole. We define 0 as the ratio 
between the number of ‘holes’ in the system and the number of burst events that have 
occurred just before complete failure of the system. We also have some statistical data on 0. 
The results are shown in figure 2, from which we may expect that 0 --f 1 when N --f M. 
Based on this numerical evidence, we assume that before complete failure of the system, 
almost every hole in the system is caused by a single burst event as the system goes to 
infinity. Hence, we may mainly consider the burst events which create a new hole without 
connecting to any other holes. 

4.2. Critical load x, and its asymptotic behaviour 

Let us denote the total load on the whole system by Nx,  where x is the average load per 
fibre in the bundle. As the load on the system increases, a series of bursts of all sizes 
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fiber-position 
Figure 1. A typical breakdown process of a fibre bundle, White indicates an intact fibre. black 
a broken one. Evolution 'time' is defined as the number of burst events which occurred. At the 
end of the process. all fibre positions are M e d  by black, meaning that all fibres have failed. 

0.55 ~ 

1 0 2  10 10 " 10'  i 
N 

Figure 2. 0 -f I when system size N goes to infinity This indicates that almost every 'hole' 
in the fibre bundle is caused by a single burst event. 

occur. As the average load x approaches a critical value, x,, a complete failure of the 
system will result. In the global load-sharing fibre-bundle model, the counterpart of x, is 
just xo (see [5 ] ) ,  which is also the average load that causes the complete failure. In that 
case, xo satisfies xop(x0) = 1 - P(xo) with P ( x )  = l: p ( y )  dy. So xo is dependent on the 
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strength distribution, p ( x ) .  but independent of  the size N of the system. However, in the 
present local load-sharing model, xc is no longer independent of the system size. We found 
in numerical simulations that the expression 

= a l n N + b  ( 1 1 )  
XC 

holds for many different strength distributions, where a and b are constants depending on 
.p (x) .  In figure 3, we show the results for three types of strength distributions: p(x) = 1, 
p ( x )  = 2 ( 1  - x )  and p ( x )  = 2 x .  From the numerical results we can see that (1 1) is valid 

.~ for a quite large region of N. When N becomes larger and larger and as N ~+ 00, we 
expect equation (I  I)  still to be valid. 

Eere we argue qualitatively for the validity of equation ( 1 1 ) .  We restrict ourselves to 
the case where the strength distribution p ( x )  is confined in a finite interval. Assume that 
the strength distribution is uniform, i.e. p ( x )  = 1 for x E [0, 11. A fibre, fibre 1 say, with 
strength xl , is assumed to cause the final complete failure. We may consider only the case 
in which the failure of fibre 1 creates a new hole. To cause the final failure, at least one 
nearest neighbour of fibre 1, fibre 2 say, must have strength xt E [XI, $XI]. and one nearest 
neighbour of fibre 1 or fibre 2, fibre 3 say, must have strength x3 E [xl, 2x1], and so on. 
Let r be the smallest integer satisfying the following inequality: 

r + 2  
---XI 2 1 
2 

0.00 
2.00 4.00 6.00 8.00 10.00 12.00 1 4  

Figure 3. The critical load x, is a decreasing quantity with increasing fibre number N. l fxc 
versus In N is shown for three types of strength distribution: 0. p ( x )  = I;  0. p ( x )  = 2(1 -x); 
A, p ( x )  = Zr. 
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which means that the load on fibre r is larger than 1, the largest threshold. From (12) we 
have 

n 

For ldrl = 1 ,  I = Z/(r + 2)*. If the r fibres do not connect any hole created before the 
final failure, the probability that the fibre with strength x1 causes the final failure is about 

l,k l" l y  (13) 
2A dx2 d x 3 " '  dx, = (r - l)!x;-'. 

The number of fibres with strength in [XI - dxl, XI] is N ldx l  I N 2 N / ( r  + 2)'. So if 4 is 
really the critical load xc, we should have roughly (r - I)!x;-l . N IdxJ - O(1). or 

where A is a constant of order 1. When N is very large and hence x, is small, r is quite 
large. Using Stirling's formula and equation (12) we get 

- =  1 InN + [ lnA-ln2+21nxc 
x, 2(1 - ln(2 - 3x3) 2(1 - ln(2 - 3xJ) 

Since Inx, changes much more slowly than l/xc, the terms in the bracket in (15) can be 
considered as a constant, and the validity of equation ( 1 1 )  is qualitatively demonstrated. If 
the first r broken fibres in the last failure connect to some holes created previously (this 
case has a very small probability of occurring when N + w), equations (12)-(15) should 
be modified, but ( 1 1 )  is still correct. It is clear that for non-unifonn strength distribution 
p(x), the conclusion is also valid. 

A word is in order here about the total strength Fc of the local load-sharing fibre bundle. 
We notice from ( 1  1 )  that Fc = N x ,  - N / a  In N + CO as N + 00, hence the divergence 
of FE is much slower than that of the global load-sharing model. 

4.3. Burst size distribution 

Equation (1 1) indicates that x, + 0 when N + 00. The fact that x, + 0 is consistent with 
the assumption that almost every hole in the system is caused by a single burst. We may 
hereafter only consider this kind of burst. In addition, as we mentioned before, we mainly 
consider a strength distribution of the form 

p(x) = vx"-I for x E [0, 11. (16) 
We first note that the burst event of A = 1 is simple and occurs in  this way: when a fibre 

of the strength XI  cannot stand a load x 2 XI, the fibre breaks; then the load is transferred to 
its two neighbours according to the load-sharing rules; both the two neighbours are strong 
enough to stand the redistributed loads and they do not break; and the burst stops here. 
Since in the above process only one fibre breaks, it is thus a A = 1 burst event. 

For A > 1, a burst event can occur in different ways. For example, when A = 2, the 
burst event can occurs in two ways, which could be formally denoted by (1 2) and (2 1) 
respectively. We call ( 1  2) and ( 2  1) the two configurations of the bursts A = 2. Here 
the numbers 1 and 2 in the brackets stand for the two failed fibres and also indicate the 
sequence in which the fibres break. The burst event (1 2 )  occurs in this way: fibre 1 breaks 
first and then after load redistribution fibre 2, the right neighbour of fibre 1, breaks too, 
and then the burst stops. Hereafter we use this convention to write the configurations of 
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the burst events: fibres that are involved in a burst event are numbered according to the 
sequence in which they break; if in a configuration two fibres are numbered identically this 
means these two fibres break at the same moment. An example is (2 1 2), which is a burst 
configuration for A = 3. In this burst, fibre 1 breaks first, then after load redistribution, 
neither of its two fibres is strong enough to stand the load, the two neighbours then break 
at the same moment. Since in this burst the two neighbours of fibre 1 break at the same 
moment, they are numbered with the same number 2. Although the two fibres are numbered 
identically we can still distinguish them through their positions. 

It can be calculated that for the the burst events of size A > 2 there are 

I .\Y ~ , i=O 

possible configurations, where n = [?I. As an example we list the total five configurations 
for A = 3 burst. They are: (2 1 2), (1 2 3), (3 2 l), (2 1 3), and (3 2 1). 

Suppose we have calculated the probability of each burst configuration. Then by adding 
up the probabilities of all configurations for the burst of A, we can get the expected number 
D(A) of burst events of size A 

- D(A)  = xProb(configuration). 
N 

Now we explain how to calculate the probability for each burst configuration. We write 
out the probability of a configuration according to the strength evaluations of the fibres 
involved in the burst. For example, the probability of the configuration (2 1 2) is 

In the square bracket in the above expression, there are two integrations, each of which 
corresponds to the strength evaluationof a fibre in the burst. It is obvious that the strength X I  

of fibre 1 must be in the interval [0, xc] ,  so we have in the above expression the integration s,” dxl . . .. The other two fibres numbered with 2 break later than fibre 1, so their strengths 
must be larger than X I ;  after fibre 1 breaks, the load on each of the two neighbours is 3x112, 
then the two neighbours break at~the same moment, so their sfrength must be smaller than 
3x112, i.e. XI < xz < 3xl/2 and XI <xi < 3x112. 

In a similar way we write out the probability for the configuration (1 2 3) as 

Although in principle we can calculate the expected number of bursts D(A)  by (18). 
the calculation can only be carried out for small A. For large A, the total number of 
configurations is large and makes this kind of calculation very expensive in terms of CPU 
time. Fortunately we have found a way to solve this problem. The key point of the method 
is to classify these configurations properly, then we get a ‘hierarchy relation’ for calculating 
the probabilities of these configurations. 

For a given A we classify the configurations into three groups: group 01, group p and 
group y .  Group LY is the set of configurations that have the form (i . . . i). where 2 6 i < A. 
In a configuration of this group, the fibre at the left end and the fibre at the right end are 
numbered identically, meaning the two fibres break at the same moment. For example, the 
configuration (2 1 2) is in group LY for A = 3; (3 1 2 3) is in group 01 for A = 4. 



4332 S D Zhang and E J Ding 

Group p is the set of configurations that have the form (i i - 1 . . . j )  or the form 
( j  . . . i - 1 i), where 2 < i < A and 1 < j < i - 1. In a configuration of this group, the 
fibre numbered with i and the fibre numbered with i - 1 must be neighbours and they also 
must be at one of the two ends of the configuration; the other end of the configuration is a 
fibre numbered with j and 1 < j c i - 1. Examples are (I  2 3) for A = 3, (2 1 3 4) for 
A = 4 and (4 3 2 1 2) for A = 5. ~ 

Group y is the set of configurations that have the form (i j . . . i - 1) or the form 
(i - 1 . . . j i), where 2 < i < A and 1 < j < i - 1. In a configuration of this group, 
the fibre numbered with i and a fibre numbered with i - 1 are at the two ends of the 
configurations, one at each end. For example, (2 1 3) for A = 3, (3 1 2 4) for A = 4. 
There might be another fibre which is also numbered with i - 1, but this fibre must be 
neighbour of the fibre i .  Examples are (2 I 2 3) for A = 4 and (4 3 1 2 3) for A = 5. 
These kinds of configurations are also classified into group y .  

With the above classification, we can then calculate the expected number of burst events 
D(A)/N by adding up the probabilities of the three groups of configurations. In calculating 
the group probabilities for A, we find they can be calculated by using the results for A - 1, 
because the probability expression for a A configuration contains some common factors 
with that of a A - 1 configuration. Here we present an example. The probability of the 
configuration (2 1 2 3) for A = 4 is ~ 

Comparing equation (21) with (19). we see that the bracket in the expression for P(2123) 
contains two integrations that are also contained in P(212). 

We made some calculations and found that the expected number of bursts with size A 
has the following form: 

where Ci, Ci and Ci are coefficients that satisfy the following hierarchy relations: 

with 
cp = 1 cp=o c: = o  
C,.=O~ c,B=o c; = 2 [(;)U - 13 (24) 

The coefficients C:, Cf and C i  we introduce into the calculations are of criricaf importance. 
We include in the appendix some more detailed discussions to show how the hierarchy 
relations are deduced for A = 1, 2, 3 and 4. 

In equation (22), Cz, Cf and Ci can be obtained from the hierarchy relations (23) 
and (24). However, x, is not obtained analytically, but from numerical calculations. The 
relation between xc and N is expressed as (11) and (15). Comparing the results (23). (24) 
with the numerical data in figure 4, we see that the agreement is good. In deducing the 
burst-size distribution D(A), we have neglected the influence of the failed fibre on the burst 
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Z 
\ 
n 
4 
O 
W 

A 
Figure 4. The burst-size distributions for a strength distribution of the form p ( x )  = vx"-' The 
numerical data are shown as open circles or open squares, while the analytical results (22) are 
shown as curves. Open circles and solid curve. Y = 1, N = 30000: the pawer-law exponent 
for this case is = 5.05. Open triangles and dashed cume, Y = 2. N = 100000; the exponent 
for this case is = 5.80. 

events that occur later. This fact may explain the small deviation of the numerical data 
from the analytical results in figure 4. We did not take this into account in our calculations, 
partly for simplicity, but partly because this influence should not be very strong. The results 
of our simulations justified our approach. 

We can also see that there must be some restrictions on the burst size A .  Since we must 
have (A t l ) x l / 2  < 1, and XI is of the order of x,, it follows that A < 2/x,. This means 
that the formula (22) is asymptotic: with smaller x,(larger N ) ,  it holds for larger A .  

The asymptotic form of D ( A ) / N  is not a power-law distribution. However, to a certain 
degree accuracy it can be approximated by D ( A ) / N  c( A-5. As far as the exponent k 
is concerned, we do not find a universal value. Instead, we find that $ increases with 
increasing N. The results are shown in figure 5. Note that when N is about lo3, we have 
6 4.5, as in [12]. We conclude that for the local load-sharing fibre-bundle model, the 
exponent 5 in the power law is not universal. It depends on the size of the system as well as 
on the strength distribution. In the limit N + 00, the asymptotic behaviour of the system 
is determined by the first term in the expansion of p ( x )  at x = 0. Hence, for a strength 
distribution of the form (16). each value of U defines a class of 'universality', or a class of 
asymptotic behaviour. For example, p ( x )  = 1 and p(x)  = 2(1 - x )  belong to the class of 
U = 1. From figure 5 we can see that systems of the same class have a similar tendency as 
N -+ 00. For sufficiently large N the exponent 6 increases as U increases. 
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Figure 5. The exponent e is not universal. It depends not only on the form of the fibre strength 
distribution, but also on the sire N of the system The results for three foms of strength 
distribution are shown: 0, p ( x )  = 1: 0, p ( x )  = 2(1 - x ) ;  A, p ( x )  = 2. 

5. Discussion 

In this paper we have discussed two extreme cases of fibre-bundle models, the global load- 
sharing and the extreme local load-sharing model. For the global load-sharing case, we 
are mainly concerned with the new simulation method, which greatly reduces CPU time 
expenditure and memory required. For the local load-sharing model, we showed that the 
critical load per fibre xc + 0 as the system size N + 03. Our analytical treatment reveals 
that the burst size distribution for the local load-sharing model is not exactly a power law, 
but can be approximated by a power-law relation. The exponent 5 is not universal. It 
depends on the strength distribution as well as on the size of the system. 

The intermediate case between the global model and the local model is that where 
the load of the failed fibres is taken up partly by their neighbours and partly by all other 
elements in the system. We can introduce a quantity A E [0,1], and define the model in 
the following way: once a fibre fails, the load carried by this fibre will be shared by the 
surviving fibres. A fraction h of the load of the broken fibre will be equally shared by its 
two nearest neighbours, and the remaining fraction 1 - A  of the load will be shared equally 
by all the unbroken fibres (including its two nearest neighbours). So, when A = 0, the load 
of the broken fibre is distributed equally among all surviving fibres, thus making this case 
identical to that of the global load-sharing model. If A = 1, the load of the failed fibres is 
taken up only by its two nearest neighbours, and the model reduces to the case of extreme 
local load-sharing as in section 4. It would be interesting to investigate the changes of 
the exponent 5 with changing A, from 0 to 1. For this crossover model, the simulation 
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and analytical treatment will be more complex than both extreme cases. However, we still 
expect the new simulation method to be applicable to this case. 

Appendix 

In this appendix we discuss in a little more detail the deviation of the hierarchy relations 
(U). As we mentioned in the text, the probability of a A configuration can be calculated 
on the basis of an appropriate A - 1 configuration. 

A = l  

Let us first consider the probability of burst with size A = 1. There is only one burst 
configuration, (l), for A = 1. which is classified into group a. Group ,G and group y are 
empty sets for A = 1. Assume that the burst event (1) takes place at the fibre with strength 
XI. The strengths of its two nearest neighbours must be larger than 3x1/2, so the probability 
is 

I When N --f CO, X ,  + 0, so the factor [ 1 3 x r p p ( ~ )  dr]' rr 1. We may omit this factor and 
just rewrite (Al) as 

(A2) 

A = 2  - 
For the burst events of size A = 2, there are two configurations (1 2) and (2  I), which are 
all classified into group y .  For A = 2, groups CY and f i  are empty sets. In the burst event 
(1 Z), fibre 1 fails at first, so the strength of fibre 1 must be in the region [O,x,] .  After 
fibre 1 fails, fibre 2, the right neighbour of fibre 1 breaks, thus, the strength of fibre 2 must 
be in [XI, $q]. Since this is a burst of size A = 2, the left neighbour of fibre 1 and the right 
neighbour of fibre 2 did not break, so their strength must be in [ Z X , ,  I]. So the probability 
P(12) of the configuration (1 2)  is 

Here we also have [[At p ( x )  &Iz N 1 when N --f 00. So we may rewrite the above 
equation as 

We can also write 
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So, D(2), the expected number of bursts with size A = 2, is 

S D Zhang and E J Ding 

_-  D E  - P(12) + P(21) = ZP(12) 
N 

where 

c; = z[(;)” - 1 1 .  

Here we have introduced an coefficient C; that will be used in the hierarchy relations to 
calculate the coefficients for A = 3. 

Expressing D(2) /N  in term of Cl, we have 

A = 3  

For the burst events of size A = 3, the five configurations are: (2 1 2), (1 2 3), (3 2 I), 
(2 1 3) and (3 1 2). We also classify these configurations into three groups: group (Y 

includes (2 1 2); group ,5 includes (1  2 3) and (3 2 1); group y include (3 1 2) and (2 1 3). 
The sum of the probabilities of configurations in group (Y is 

Pm = P(212) = dx1  XI) [/’” dxz p(x2) li” dr; p(x ; ) ]  = Ct [ U$’-’ dx,. 
XI 

(AS) 

Comparing equation (AS) with (A4), we note that in the brackets in the expressions P(212) 
and P(12) contain a common factor. This fact connects the coefficents C l  and CY with the 
following relation: 

(A 10) 

lXC 

c,. = f [(;)U - I] c;.~ 
The probabilities for burst events in group ,5 are 

The sum probability of this group is 

Pp = P(123) + P(321) = ZP(123) = Cf l* ~ x ~ ” - ~  1 (A121 

We also note that the brackets in the expressions for P(123) and P(321) contain some 
factors appearing in the expressions for P(12) and P(21) (see equations (A4) and (A5)). 
Then, in a manner similar to that used to obtain (AlO), we find the relation between Cf 
and C i .  that is 

c,B = (2” - 1,c;. ( ~ 1 3 )  
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Finally, the sum probability of group y is 

Py = P(213) + P(312) 

= ZP(213) 

x, 

=c;J ux:"-'dx, ( ~ 1 4 )  

where 

c; = [2y - (:)"IC;. (A13 

So the expected number of bursts with size A = 3, 0(3), expressed in term of the three 
coefficients, is 

x3" __- D(3) - P, + Ps + Py = &(CY + c,B + c;,. 
N 3 

A = 4  

For the burst events of size A = 4, there are 12 possible configurations. We also classify 
them into three groups. Group 01 include: (3 1 2 3) and (3 2 1 3). Group p include: 
(1 2 3 4), (4 3 2 I), (4 3 1 2) and (2 1 3 4). Group y include: (4 1 2 3), (3 1 2 4). 
(4 2 1 3), (3 2 1 4), (2 1 2 3) and ( 3 2 1 2). 

The probability of the~burst (3 1 2 3) is 

= f 1" uxp-ldxI Ci(2" - 1)~; .  

The probability of the burst (3 2 1 3) is 

The sum probability of group 01 is then 

P(3213) + P(3123) = 

Here we also introduce an coefficient Ct where 

In a similar way we get the sum probability for group p: 

P(1234) + P(4321) + P(4312) + P(2134) = 
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where 
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c,B = {($ - 11 (C,B + C,’). 

Likewise for group y 

P(4123) + P(3124) + P(4213) + P(3214) + P(2123) + P(3212) 

where 

c; = 2 [ (2)” - I] cy + [(;)U - 2 j  (C,B + c;,, 
Then the expected number of bursts with size A = 4, D(4) can also be expressed in 

term of the three coefficients Cy, Cf and C,‘ as 

- - A -  D(4) - x4” (c: + c,B + C,‘). 
N 4 

By now we have finished the calculations for A = 1, 2, 3 and 4. We see that D(I)/N, 
D(Z)/N, D(3)lN and D(4)/N all can be expressed in the form (22). More importantly, 
the coefficients for a given A can be calculated from the coefficients for A - 1. It is then 
not difticult to get the hierarchy relations (23) via some general calculations. 
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